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By Harold Mirels

SUMMARY

The laminar wall boundary layer behind a strong shock advancing into
stationary air has been determined. Numerical results have been obtained
for shock Mach numbers up to 14 using real gas values for density and
viscosity and assuming Prandtl and Lewis numbers of 0.72 and 1, respec-
tively. The numerical results for shear and heat transfer agree, within
4 percent, with a previously presented approximate analytical expression
for these quantities. A slight modification of this expression results
in agreement with the numerical data to within 2.5 percent. Anaiytical
expressions for boundary-layer thickness and displacement thickness, cor-
rect to within 4 percent for the present data, have also been obtained.

INTRODUCTION

Until 1957, all studies of the compressible laminar wall boundary
layer behind a moving shock had assumed that the product of viscosity
times density pu was constant throughout the boundary layer (e.g.,
refs. 1 to 5). This assumption becomes less valid as shock strength
increases. Consequently a study was undertaken, at that time, to
evaluate the effect of variable pu on the laminar boundary behind a
strong shock moving into air. Real gas properties (ref. 6) were used.
The boundary layer was assumed to be in thermodynamic equilibrium, and
the Lewis number was assumed to be 1. Shock Mach numbers from 4 to 14
were considered.

The initial phase of the investigation was for a Prandtl number of
1. Numerical results for shear and heat transfer were reported in ref-
erence 7. Analytical expressions were used therein which correlated the
shear and heat-transfer data to within 3 percent. The analytical expres-
sions were generalized (by comparison with constant pp solutions) to
account for Prandtl number not equal to 1, but the validity of this
generalization was not established.



The second phase of the investigation was for a Prandtl number cf
0.72. Numerical results were obtained prior to the spring of 1958.
These results were not published at that time in the hope that more ex-
tensive data would be obtained. However, the press of other research
projects prevented the continuation of the study. Recent informal dis-
cussions with Dr. R. Hartunian, of the Cornell Aeronautical Laboratory,
and Dr. N. Kemp, of the Avco Everett Research Laboratory, have indicated
that the unpublished data are of current interest. In particular, the
numerical data are of interest for correlating experimental wall heat-
transfer measurements in shock tubes and for estimating the flow non-
uniformity in low-density shock tubes. Hence the present publication of
the data was undertaken.

The present report includes the Prandtl number 1 data previously
reported in reference 7, in order to make that data more generally avail-
able. It is also shown herein that the approximate analytical expression
for shear and heat transfer, developed in reference 7, is correct to
within 4 percent for Prandtl number 0.72. Finally, approximate expres-
sions are developed herein for boundary-layer thickness and displacement
thickness which agree with the numerical results for Prandtl number 0.72
to within 4 percent. The latter expressions are useful for estimating
flow nonuniformity in shock tubes (e.g., refs. 8 and 9).

Numerical solutions for the wall laminar boundary layer behind strong
shocks in oxygen recently have heen presented in reference 10. Real gas
properties, including the effects of Lewis number other then 1, are con-
sidered. The correlation of theoretically derived heat transfer with ex-
perimentally observed heat transfer in a shock tube (for both laminar and
turbulent cases) is also discussed therein and in reference 11. 1In
addition, reference 10 presents approximate analytical expressions for
shear and heat transfer which are similar to those developed in reference
7 but which include the effect of Lewis number.

The author is indebted to Richard J. Wisniewski for aid in obtaining
the boundary-layer thickness correlations of the present report.

ANATYSIS

Consider the laminar boundary layer behind a shock moving into a
stationary fluid. The problem is a steady-state one in a coordinate
system fixed with respect to the shock (fig. 1(a)). In this coordinate
system the wall moves with the shock velocity u = Mqaq.
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Equations of Motion

If the boundary layer is assumed to be in thermodynamic equilibrium
with a Lewis number of 1, the eguations of motion for x > 0 are (e.g.,
ref. 12)

Béiu) + aé§V) -0 (1a)
5 du _ D du
pu§+pvyy—yy(u-a—§) (lb)
OH 3H _ O fu OH d 1)/ du?
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where H 1is the local stagnation enthalpy
2
H=h + C%;) (2)

The other symbols are defined in the appendix. From equation (la), a
stream function exists such that
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such that
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and assuming V to have the form
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reduces equations (1b) and (lc) to the form
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In order to integrate equations (7), 1t 1s necessary to express

(7a)

(7o)

(8)

C and

0 as functions of f and g. This is generally done by determining C
and ¢ as functions of h/h, (for each free-stream pressure) and noting

that

ClR=-W
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The boundary-layer quantities of interest are

Ty = (u %%)w = Hyle Zziw £"(0) (11a)
e ), 0,
y = Ez zi:W [n - 1(2)) (11c)

where

I(n) ='[n ( - ?ps)dn (12)

The integral I(n) can be evaluated, after integrating equations (7), if
p/pw is known as a function of hn/h .
Integration of the Energy Equation for o =1

For o =1, equations (7) and (8) become

1
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Equation (13b) can be integrated to yield
f' - U
g - g(0) = [I_-_—Lr] (1 - g(0)) (14)

which is a form of the Crocco relation between velocity and stagnation
enthalpy. If g(0) = 1, then

g=1 (15)

so that the stagnation enthalpy is constant across the boundary layer.
Recall that in a shock fixed coordinate system, stagnation enthalpy is
conserved across the shock wave. It can then be shown that g(0) =1
provided h, = h;. The latter relation is approximately valid in the

shock tube because the relatively high heat capacity and conductivity of
the wall tends to maintain the wall at its original temperature (e.g.,
ref. 7), and the pressure effect on enthalpy is small. When equation
(15) applies, h'(0) # O and there is heat transfer to the wall (in con-
tra distinction to the semi-infinite flat-plate problem where there is
no heat transfer for the g = 1 case).

Numerical Solutions

Numericel solutions of equations (7) and (8) have been obtained
which correspond to shocks of strength up to Mg = 14 propagating into

air at T) = 522° R and pj = 0.001 and 0.01 atmosphere. The Runge-
Kutta method of integration was used with a step size An = 0.02.1 The
wall temperature was assaumed to remain at 522° R for these calculstions.
Conditions behind the shock were determined by using thermodynemic charts
for equilibrium air (ref. 6).

In the integration of equations (7) it was assumed that ¢ was
constant across the boundary layer. This is reasonable in view of the

lThis step size was established for the relatively low shock Mach
number cases by decreasing the step size until the shear and heat trans-
fer results were insensitive to a further change. Since ng decreases

with increase in shock Mach number, a further check of the validity of
this step size should have been made at Mg = 14 - but this was not done.
However, Dr. Richard Hartunien, in a private communication, has stated
that he checked the effect of step size at Mg = 14 and found that

An = 0.02 leads to accurate results for shear and heat transfer. He
also stated that the computations of reference 10 were also made with

An = 0.02 (by error, ref. 10 notes the step size as being An = 0.01).

SL6-d
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rough computations of reference 13. The following analytic expression
for C was used:

2
¢ = 12481 0.5481 o.ooza(—h— - ) - 5.74><10'5(;— - 1) (16)

~/h/n, h/hy, h v

w
Equation (16) agrees to within 3 percent (for T, = T, = 522° R and the

specified ranges of p; and MS) with computations based on the thermo-

dynamic charts for equilibrium air and the Sutherland viscosity-
temperature relation. The thermodynamic charts provided p/pw and T/'I'w

as a function of h/hw (for each specified T, and free-stream pressure)

and € could then be found by using the Sutherland relation

198.6
1 + T 3/2
B __w_(_T_ (17)
Wy T . 198.6\T,
TW TW

The constants in equation (16) were chosen so that C has specified
values at h/hw = 1, 10, 40 and has the correct slope at h/hw = 1. As

a result, equation (16) provides an accurate representation of C for
1< h/hw < 42, which 1is the range required for the present investigation.

Equation (16) tends to underestimate C for h/h, greater than 42.

Similarly, p/pw can be approximated by

0.02586 b + 0.94828

h
L. — (18)
Py - - 0.02586

W

for the range of p; and Mg under consideration. The constants in
equation (18) were chosen so that p/pW has specified values at .
h/h, = 1, 10 and has the correct slope at h/h, = 1. Equation (18) is
correct to within a few percent for 1 < h/hy < 30 but is correct only
to within 10 percent for h/hw near 42. It should be remembered that
equation (18) is used only to evaluate I(q).

In order to determine the effects of Prandtl number, equations (7)
were integrated for o0 = 1.0 and 0 = 0.72. To determine the effect



of variable C, equations (7) were integrated for C =1 and for C as .
defined by equation (16). The results are summarized in table I. The

results for C = 1 represent an extension of the results of references

2 and 3 to values of U Dbeyond 6. The shear and heat-transfer results

for 0 =1 and C = equation (16) have been reported in reference 7.

The results for o0 = 0.72 and C = equation (16) are new and represent

the primary numerical contributicn of the present paper.

CORRELATION OF DATA
Reference 7 proposed that the laminar-boundary-layer shear and

heat transfer for variable C and constant 0O could be estimated
from

£"(0) 0.29 »

= -0.489+/1 + 1.665 U Co (19a)
1

h'(0) _ 0.489~/1 + 1.665 U ¢2+ 29 5(0.48+0.022 U) (19b)

hr - hw

where hr is found from

oy

Ug U(0.39-0.023 U)

r 2
=1 U -1
+ ( )" =

—_ 19¢c
s (19¢)

e

A comparison of equations (19a) and (19b) with the numerical results ob-
tained by integrating equations (7) is also given in table I. For

0 = 1, equations (19a) and (19b) are correct to within 1 percent for C

a constant and to within 3 percent for C varying according to equation
(16). (The acciracy of egs. (19a) and (19b), for ¢ = 1, was previously
pointed out in ref. 7.) The present numerical solutions for o = 0.72
indicate that equations (19a) and (19b) are correct to within about 4 per-
cent for the data considered herein.

Equations (19a) and (19b) would agree with the o = 0.72 data to

0.29
Ce

within 2.5 percent 1f the factor were replaced by 02'265 in

these equations. The exponent 0.29 was proposed in reference 7 on the

basis of the numerical solutions for the ¢ = 1 cases. The use of the

exponent 0.265 improves the correlation with the ¢ = 0.72 data, but

at the expense of a poorer correlation of the o = 1 data. Since the

g = 0.72 solution is the more realistic one, for air, the exponent

0.265 should be used in equation (19b) when making estimates of the

wall heat transfer due to strong shocks moving through air. -

Reference 10 obtained numerical solutions for the shear and heat
transfer associated with strong shocks moving through oxygen, assuming

SL6-d
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o = 0.72 and different Lewis numbers. The data for Lewis number equal
to 1 were correlated to within 1 percent by equations (19a) and (19b)

with C, raised to the 0.24 power. The difference between the ex-

ponents 0.265 and 0.24 1is relatively small, considering that the
viscosity law, the shock solutions, and the real gas properties used in
reference 10 were different from those used herein.

The displacement thickness 6* in the steady coordinate system (fig.
l(a)) is of interest for computing attenuation and nonuniformities in shock
tubes (e.g., refs. 8 and 9). The displacement thickness is found from
I(w) and 1lim (f - ) by substituting into equation (11d). Values for

— 0
these quantities, obtained from the numerical integration of equations
(7), are given in table I. The following approximate formula can be used
to estimate 8%:

* Ye Pe 0.37],.
5 Vz}ww oy Co ”'lim (n - £) - I(w) (20)
- 00

Ref. 3
where
[lim (n - f):, = 1.134(1 - U) (21)
n-w Ref. 3 V1 + 1.022 U
br Dy (U - 1)? v
[I(=)] _ 1.134 he he 1.569 i 2he
Ref. 3  + 1.022 U o0-47+0.029 U Al + 0.995 U o0-045(U-1)

(22)

Equations (21) and (22) were obtained in reference 3 and correlate the
constant property solutions to within 1 percent. The factor 08'57, in

equation (20), corrects these expressions for the effect of variable C.
The ratio of the value of &%, as obtained from eguation (20), to the
value of ©®* obtained by numerical integration is given in table I. It
is seen that, for the cases considered herein, equation (20) is correct to
within 3 percent.

The boundary-layer thickness & in the unsteady (wall stationary)
coordinate system (fig. 1(b)) may be defined as the value of y at which
the velocity relative to the wall reaches 98 percent of its free-stream
value. That 1s, it corresponds to



10

_ P
U-f _o.99

=1
ajc

> (23)

or

fl

0.99 + 0.01 U y

This boundary-layer parameter is of interest, in experimental shock-tube
studies, as a measure of the extent to which the boundary layer extends
into the free stream.

The value of 1n corresponding to y = & 1is denoted herein by ng.

The boundary-layer thickness & can then be computed from equation (llc)
by using the values of ng and I(w) given in table I. (More properly,

I(ng) should be used when computing & from equation (11c), but the use

of I(w) should introduce a negligible error.) The resulting values for
& are included in table I.

The following approximate formula can be used to estimate i

[TUe Pe 0.48
® 2xv,, Py, = Ce [’16 - I(m)]Ref. 3 (24)

where

3.20
M L — (25)
[SJRef- 35 /1 +0.5430U

and I(w) is found from equation (22). (Again, I(n) has been evaluated,
for convenience, at 1n = o rather than ng. The error should be unim-

portant.) Equation (25) was found by assuming ng to be of the form
A/4/1 + BU and determining A and B fromthe U=1 and U= 6

constant property results of reference 3. (Eq. (25) differs slightly from

a similar formula given in appendix D of ref. 8 and is the more accurate
expression 1f the edge of the boundary layer is taken to be

E/ﬁ; = 0.990.) The coefficient 02'48, in equation (24), is the approxi-

mate correction to account for variable C. The ratio of 8, as obtained
from equation (24), to the value obtained from the numerical integration
of equations (7) is given in table I. Equation (24) is correct to 4 per-
cent for the cases noted herein.

Iewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, December 7, 1960
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APPENDIX - SYMBOLS

a local speed of sound

C or/(eu),

f function of n defined by eq. (6)

g H/H,

H stagnation enthalpy in shock stationary coordinate system
h static enthalpy

I(n) integral defined by eq. (12)

Mg Mach number of the shock

e pressure

Gy heat-transfer rate

R gas constant

T absolute static temperature

u /e

u,vVv velocities parallel to X,y axis

G,; velocities parallel to §,§ axis

Es velocity of shock in §,§ coordinate system
u, velocity of wall in X,y coordinate system

X,y steady coordinate system (fig. 1(a))
X,y unsteady coordinate system (fig. 1(b))
z molecular weight ratio

® fluid velocity - boundary-layer thickness (value of y corres-
ponding to T/t = (u - uw)/(ue - u,) = 0.99)

fluid-boundary-layer displacement thickness in steady coordinate

[o0]
system, / ( - p%)dy
0 e’e



1z

n similarity parameter, eq. (4)

g value of 7 corresponding to y = %

3 coefficient of viscosity

v kinematic viscosity

£ function defined by eq. (4)

o] mass density

o} Prandtl number

T local shear stress exerted by fluid on wall
¥ stream function, eq. (3)

Subscripts:

e flow external to fluid boundary layer

T quantity evaluated for zero heat transfer
W guantity evaluated at the wall

1 undisturbed flow shead of shock
Superscript:

t

1. Hollyer, Robert N., Jr.:
Eng. Res. Inst., Univ. Michigan, July 1, 1953.
N6-ONR-232-TO IV.)

2. Mirels, Harold:

3. Mirels, Harold:
Moving into Stationary Fluid.

denotes differentiation with respect to 1
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8 Shock
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(a) Steady coordinate system.
¥,V
Shock —
wave Ug
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T - %,

(b) Unsteady coordinate system.

Figure 1. - Coordinate systems used to study boundary layer behind a
shock wave advancing into a stationary fluid.

NASA - Langley Field, Va. E-975
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